
JOURNAL OF SIMULATION, VOL. 13, NO. 2. 2025                                                                                                                         23 

© ACADEMIC PUBLISHING HOUSE 

Improving Human Keypoint Detection with 

Optimized YOLOv11 
 

Hongjiang Li 
Northeast Petroleum University, Daqing 163318, Heilongjiang, China 

 

 

 

Abstract: To address the challenges of inaccurate 

localization of multi-scale human keypoints and keypoint 

drift under dynamic pose variations, this study proposes 

an efficient keypoint detection approach built upon an 

improved YOLOv11 architecture. A Multi-Resolution 

Parallel Network (MRPN) is introduced after the 

backbone to maintain parallel processing of high-, 

medium-, and low-resolution feature maps while enabling 

cross-scale interaction, thereby enhancing the model’s 

capability to perceive keypoints of varying scales. In 

addition, a Temporal Spatial Context Fusion Module 

(TSCFM) is designed, which integrates a dynamic 

temporal modeling unit with a spatial context 

enhancement layer to jointly optimize spatial structural 

consistency and temporal coherence across both single-

frame and sequential-frame inputs. The proposed method 

significantly improves the accuracy and robustness of 

keypoint detection while preserving the inference 

efficiency of the original YOLOv11, making it well 

suited for real-time applications requiring high precision. 
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1. Introduction 

Human keypoint detection, as one of the core tasks in 

computer vision, plays a pivotal role in a wide range of 

applications, including action recognition, human –
computer interaction, sports analytics, virtual reality, and 

medical rehabilitation [1]. With the rapid development of 

computer-vision technology and the widespread use of 

intelligent devices, keypoint detection has become an 

essential bridge connecting the physical and digital 

worlds, enabling various intelligent systems to perceive, 

interpret, and respond to human motion. In sports training, 

for example, it supports the analysis of motion quality; in 

rehabilitation, it helps evaluate the recovery of motor 

functions; and in human – computer interaction, it 

facilitates more natural and intuitive body-motion control 

[2]. 

Despite its broad applicability, human keypoint 

detection remains a challenging task. One major 

difficulty arises from the large variation in keypoint 

scales: small landmarks such as facial features coexist 

with larger joints such as shoulders and hips, making it 

difficult for traditional feature extractors to capture 

discriminative representations across all scales. Moreover, 

human poses are highly dynamic, and the positions of 

keypoints can change rapidly across consecutive frames, 

leading to temporal instability and localization drift[3]. 

Furthermore, explicit geometric relationships exist among 

keypoints — such as joint angles and relative spatial 

constraints — which are essential for producing 

structurally coherent and anatomically plausible 

predictions but are often insufficiently modeled by 

existing methods. 

 
Figure 1. Keypoint Detection Figure  

The effect diagrams are shown in Figures 1. Deep-

learning–based approaches, particularly those inspired 

by the YOLO family, have recently become the 

mainstream solution for real-time detection tasks due to 

their high efficiency. YOLOv11, as a representative 

single-stage detector, consists of a backbone network for 

feature extraction, a feature pyramid for multi-scale 

fusion, and a detection head for predicting keypoint 

locations [4]. However, the standard framework exhibits 

limitations when directly applied to keypoint detection: it 

struggles to handle multi-scale keypoints effectively, 

especially fine-grained landmarks; it lacks mechanisms to 

maintain temporal coherence during rapid pose changes; 

and it does not explicitly model geometric relationships 

among keypoints, which may result in degraded accuracy 

in complex or highly deformable poses. 

To address these issues, this paper proposes a real-time 

human keypoint detection model based on an improved 

YOLOv11 architecture [5]. The proposed approach 

incorporates a Multi-Resolution Parallel Network 

(MRPN) to better capture keypoints of varying scales 

through parallel feature processing and cross-resolution 

fusion [6]. Additionally, a Temporal Spatial Context 

Fusion Module (TSCFM) is designed to enhance 

temporal continuity and structural consistency by 
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integrating dynamic temporal modeling with spatial 

contextual reasoning [7]. Through these improvements, 

the model aims to achieve robust and accurate keypoint 

localization while maintaining the efficiency 

characteristic of the YOLO series. 

The remainder of this paper is organized as follows. 

Chapter 2 reviews existing research on human keypoint 

detection. Chapter 3 introduces the architecture and key 

components of the proposed approach, including the 

MRPN and TSCFM modules. Chapter 4 presents the 

experimental setup and evaluation methodology. Chapter 

5 concludes the work and discusses potential future 

research directions. 

2. Related Work 

Human keypoint detection, as a fundamental task in 

computer vision, has a research history dating back to the 

1990s [8]. Early approaches relied heavily on hand-

crafted features and graph-based models, leveraging prior 

knowledge of human anatomy — such as joint-length 

proportions and feasible angle ranges — to localize 

keypoints. However, these methods exhibited poor 

adaptability to complex scenarios, including occlusion, 

extreme poses, and challenging illumination conditions 

[9]. 

With the rise of deep learning, keypoint detection 

methods have undergone substantial evolution. A major 

milestone appeared in 2016 with the introduction of the 

Stacked Hourglass Network, a heatmap-regression –
based architecture that achieved high accuracy by 

stacking multiple prediction modules [10]. Despite its 

effectiveness, the method required high computational 

cost, limiting its applicability in real-time systems. 

Subsequently, OpenPose incorporated a body-part 

affinity representation and a multi-stage heatmap 

refinement strategy, enabling multi-person keypoint 

detection and becoming one of the most influential real-

time frameworks at the time. Nevertheless, its heavy 

computation remained a barrier to deployment on mobile 

devices. 

A significant breakthrough was marked in 2021 by 

HRNet, which maintained high-resolution feature 

representations through parallel multi-scale processing 

[11]. By avoiding the loss of fine-grained information 

typically introduced by repeated downsampling in feature 

pyramid networks, HRNet achieved substantial gains in 

accuracy and established itself as a landmark model in the 

field. However, HRNet primarily focuses on single-frame 

pose estimation and lacks mechanisms for ensuring 

temporal consistency under dynamic pose changes. 

In 2018, YOLOv3 integrated keypoint detection into 

the YOLO detection pipeline, leveraging the efficiency of 

single-stage detectors to achieve real-time inference. 

While the model demonstrated favorable speed, it still 

struggled with multi-scale keypoints, particularly small 

landmarks such as fine facial features [12]. 

More recently, increasing attention has been directed 

toward modeling geometric relationships among 

keypoints. Part-aware Network enhanced spatial context 

by identifying body parts as intermediate semantic units, 

significantly improving detection performance in 

scenarios involving large joint-angle variations. Methods 

such as SimpleBaseline further simplified the detection 

pipeline while maintaining high accuracy and efficiency, 

delivering real-time performance without sacrificing 

precision. 

For mobile applications, lightweight models such as 

MobileNet-Pose have integrated compact backbone 

networks with keypoint detection heads, achieving a 

practical balance between accuracy and computational 

efficiency [13]. These approaches can reach real-time 

speeds on resource-constrained devices, making them 

suitable for mobile and embedded deployments. 

Overall, human keypoint detection has evolved from 

early hand-crafted pipelines to end-to-end deep learning 

models, from single-frame estimation to leveraging multi-

frame information, and from accuracy-focused designs to 

architectures that balance precision and efficiency. 

Despite the progress, challenges remain in multi-scale 

feature processing, maintaining coherence under rapid 

pose changes, and effectively modeling spatial 

relationships among keypoints. In particular, achieving 

high accuracy on small-scale keypoints while preserving 

real-time performance, and mitigating localization drift 

during dynamic pose transitions, continue to be open 

problems — providing the motivation and innovation 

direction for this study. 

3. Method 

3.1 Multi-Resolution Parallel Network (MRPN)  

One of the central challenges in human keypoint 

detection lies in the large variation of keypoint scales. 

When keypoints span a wide range of sizes—from small 

landmarks such as the head or eyes to larger joints such 

as shoulders or legs — traditional Feature Pyramid 

Networks (FPN) often struggle to capture sufficient 

multi-scale representations [14]. To address this issue, we 

introduce the Multi-Resolution Parallel Network (MRPN), 

a feature-fusion module inspired by the principle of 

maintaining multi-resolution features in parallel, similar 

in spirit to HRNet but redesigned with a distinct 

architecture tailored for YOLOv11. 

MRPN is inserted after the YOLOv11 backbone and is 

motivated by the need to preserve high-resolution 

representations while enabling efficient multi-scale 

feature interaction. Unlike conventional FPNs that 

repeatedly downsample and upsample features, MRPN 

retains four parallel feature streams at different 

resolutions (1/4, 1/8, 1/16, and 1/32 of the original input). 

These feature maps remain active throughout the 

processing pipeline, preventing information loss caused 

by aggressive downsampling operations. 

A key innovation of MRPN lies in its cross-scale 

interaction mechanism, which allows features at different 

resolutions to complement one another. At each 

resolution level, information from all other scales is 

integrated through newly designed cross-connections. 

Instead of simple concatenation, MRPN employs 

lightweight convolutional layers and attention-based 
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fusion blocks to adaptively aggregate cross-scale 

information, enabling high-resolution features to gain 

global context while low-resolution features benefit from 

fine-grained spatial details. 

During the final fusion stage, MRPN applies a feature 

rescaling strategy that upsamples high-resolution streams 

to align with low-resolution ones. This ensures consistent 

spatial alignment and avoids distortions often seen in 

traditional fusion schemes. The resulting feature 

representation captures both local structural detail and 

broader contextual cues, making it highly suitable for 

precise keypoint localization. 

In terms of effectiveness, the MRPN module 

significantly enhances detection performance for both 

small- and large-scale keypoints. Small landmarks such 

as facial keypoints benefit from improved high-resolution 

retention, while larger joints gain more structurally 

consistent representations through cross-scale context 

modeling. The parallel architecture also reduces 

unnecessary computations, increasing overall efficiency. 

The lightweight cross-scale connections increase 

computational cost by only a small margin, making the 

module suitable for real-time and mobile-device 

deployment. In occlusion-heavy scenarios, MRPN 

demonstrates robust feature extraction capability, 

accurately localizing partially occluded joints and 

providing high-quality representations for subsequent 

attention modules. 

Compared with HRNet, MRPN strengthens cross-scale 

interaction with a more efficient and lightweight design, 

making it well-suited for resource-constrained 

applications requiring both accuracy and real-time 

performance. The structural schematic diagram of MRPN 

is shown in Figure 2. 

 
Figure 2. MRPN 

3.2 Temporal Spatial Contextual Fusion Module 

(TSCFM) 

To address the issue of keypoint localization drift 

during rapid pose transitions, we propose the Temporal 

Spatial Contextual Fusion Module (TSCFM). This 

module jointly models temporal continuity across frames 

and the spatial contextual information surrounding each 

joint, enabling stable and accurate keypoint estimation in 

dynamic scenarios [15]. 

TSCFM consists of two synergistic components: the 

Dynamic Temporal Modeling Unit (DTMU) and the 

Spatial Context Enhancement Layer (SCEL). Together, 

they refine the feature representation of each keypoint 

from temporal and spatial perspectives. 

(1) Dynamic Temporal Modeling Unit (DTMU) 

DTMU captures cross-frame motion cues by 

computing keypoint displacement vectors and applying 

an adaptive temporal filtering strategy. Its core lies in a 

dynamic temporal weighting mechanism that adjusts the 

filtering strength according to the magnitude of pose 

variation. During smooth movements, DTMU preserves 

more historical information; during intense actions such 

as jumping or rapid rotation, it suppresses outdated 

context to prevent drift.  

(2) Spatial Context Enhancement Layer (SCEL) 

SCEL focuses on enhancing local spatial context by 

employing joint-aware convolutional kernels that 

emphasize structural cues around each keypoint. This 

design is particularly beneficial for joints with large 

deformation or self-occlusion—such as elbows and knees

—where fine-grained spatial features are crucial.  

The innovation behind TSCFM lies in its unified 

modeling of temporal dynamics and spatial structure. 

Human pose is inherently a spatiotemporal signal; the 

keypoint position in the current frame is influenced not 

only by visual evidence but also by the posture evolution 

from previous frames. Leveraging this property, DTMU 

captures the underlying motion trend while SCEL 

reinforces local structural cues, resulting in keypoint 

predictions that are both stable and precise. The structural 

schematic diagram of TSCFM is shown in Figure 3. 

 
Figure 3. TSCFM 

4. Experimental Analysis 

4.1 Experimental Settings 

All experiments are conducted on the COCO 2017 

keypoint validation set, which contains 5,000 images 

annotated with 17 human keypoints. To ensure consistent 

evaluation, all model variants— including the baseline, 

MRPN-enhanced model, TSCFM-enhanced model, and 
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the final optimized YOLOv11—are trained and tested 

under the same experimental configuration. The input 

resolution is fixed at 640×640 for both training and 

inference. Standard data augmentation strategies 

commonly used in keypoint detection, such as random 

horizontal flipping, scale jittering, and color perturbation, 

are applied to improve generalization performance. 

Training is performed using the AdamW optimizer with 

an initial learning rate of 0.001 and a batch size of 32. 

The total training schedule spans 300 epochs, and all 

experiments are conducted on a single NVIDIA RTX 

3090 GPU with mixed-precision acceleration enabled. 

Inference speed (FPS) is measured using a batch size 

of 1 with the same input resolution to ensure 

comparability across models. The reported FPS values 

represent the average performance after a brief warm-up 

phase, thereby reflecting realistic single-image inference 

efficiency. No test-time augmentation or post-processing 

refinements beyond standard decoding are applied, and 

all models are evaluated strictly following the COCO 

keypoint metric based on OKS. Unless otherwise stated, 

all implementation details remain consistent across 

experiments to ensure that performance differences can 

be directly attributed to the introduction of MRPN and 

TSCFM. 

4.2 Performance Comparison 

Table 1. Performance comparison of different model variants 

Model Params (M) FPS AP@0.5:0.95 AP50 

Baseline 22.5 52 54.2% 76.8% 

+ MRPN 23.1 50 56.7% 78.5% 

+ TSCFM 23.3 49 57.8% 79.2% 

Optimized 

YOLOv11 
23.5 48 58.7% 79.8% 

As shown in Table 1, the optimized YOLOv11 achieve 

58.7% AP@0.5:0.95, improving by 4.5 percentage points 

over the baseline, while maintaining real-time 

performance at 48 FPS. The integration of the MRPN 

module increases the model size by only 0.6M to 23.1M 

parameters, with a slight decrease of 2 FPS. However, 

AP@0.5:0.95 increases by 2.5 points to 56.7%, and AP50 

increases by 1.7 points to 78.5%. Introducing the TSCFM 

module further adds 0.2M parameters and reduces FPS by 

1, but brings an additional 3.6-point improvement in 

AP@0.5:0.95 and 2.4-point improvement in AP50. When 

both MRPN and TSCFM are applied together, the model 

size increases modestly to 23.5M, while AP@0.5:0.95 

improves by 4.5 points to 58.7% and AP50 improves by 

3.0 points to 79.8%, demonstrating strong combined 

effectiveness. The figure 4 illustrates the performance 

improvements brought by the proposed modules, where 

both AP@0.5:0.95 and AP50 consistently increase as 

MRPN and TSCFM are progressively integrated into the 

baseline model. 

 
Figure 4. Performance Comparison 

The ablation study results in Table 2 further confirm 

the contribution of each module. The MRPN module 

improves AP@0.5:0.95 by 2.5 percentage points (54.2% 

→ 56.7%) and AP50 by 1.7 points (76.8% → 78.5%). 

The TSCFM module provides even greater improvements, 

increasing AP@0.5:0.95 by 3.6 points (54.2% → 57.8%) 

and AP50 by 2.4 points (76.8% → 79.2%). When both 

modules are applied, the overall AP@0.5:0.95 reaches 

58.7%, outperforming the use of MRPN or TSCFM alone 

by 1.0 and 0.9 points, respectively. These results indicate 

that MRPN and TSCFM complement each other 

effectively: MRPN enhances multi-resolution feature 

representation, while TSCFM improves temporal –
spatial consistency, jointly boosting keypoint detection 

accuracy without compromising real-time performance. 

Table 2. Ablation study 

Method AP@0.5:0.95 AP50 

Baseline 54.2% 76.8% 

+ MRPN 56.7% 78.5% 

+ TSCFM 57.8% 79.2% 

Optimized YOLOv11 58.7% 79.8% 

The effect diagrams of human keypoint detection are 

shown in Figures 5. The optimized YOLOv11 benefits 

from the combination of MRPN for robust multi-scale 

feature modeling and TSCFM for enhanced temporal–
spatial context integration. This synergy significantly 

improves performance under rapid pose transitions and 

complex motion scenarios. While maintaining 48 FPS 

real-time inference speed, the model achieves 4.5-point 

and 3.0-point improvements in AP@0.5:0.95 and AP50, 

respectively. These results demonstrate that the proposed 

design effectively balances accuracy and efficiency, 

providing a high-performance solution for dynamic 

human pose estimation tasks. 

 
Figure 5. Detection Figure  
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5. Conclusion 

In this work, we proposed an enhanced human 

keypoint detection framework based on YOLOv11, 

addressing two long-standing challenges in pose 

estimation: inaccurate multi-scale keypoint localization 

and temporal instability under dynamic motion. To 

overcome these limitations, we introduced two novel 

modules—the Multi-Resolution Parallel Network (MRPN) 

and the Temporal Spatial Context Fusion Module 

(TSCFM) — which respectively improve multi-scale 

feature representation and temporal–spatial consistency. 

The MRPN module maintains parallel multi-resolution 

feature streams and enables effective cross-scale 

interaction, substantially enhancing the detection 

performance of both small and large keypoints. By 

preserving high-resolution representations throughout the 

network and introducing lightweight adaptive fusion 

connections, MRPN strengthens spatial feature 

completeness while maintaining computational efficiency. 

The TSCFM module further improves robustness by 

integrating temporal continuity and spatial contextual 

cues. Through the Dynamic Temporal Modeling Unit, the 

system mitigates keypoint drift across frames, while the 

Spatial Context Enhancement Layer refines local joint 

representations. Together, these components ensure 

consistent and accurate keypoint localization even under 

rapid motion, occlusion, and complex pose variations. 

Extensive experiments on the COCO 2017 keypoint 

validation set demonstrate the effectiveness of the 

proposed approach. The optimized YOLOv11 achieves 

an AP@0.5:0.95 of 58.7%, outperforming the baseline by 

4.5 percentage points while maintaining real-time 

performance at 48 FPS. The ablation studies confirm that 

MRPN and TSCFM contribute complementary 

improvements, jointly delivering superior accuracy 

without compromising speed. 

Overall, this work provides a practical and efficient 

solution for real-time human keypoint detection in 

dynamic environments. The proposed modules are 

lightweight, generalizable, and can be seamlessly 

integrated into other one-stage detectors, making the 

approach suitable for applications such as human –
computer interaction, motion capture, intelligent 

surveillance, and sports analytics. Future research will 

explore incorporating transformer-based global modeling 

and extending the framework to 3D pose estimation and 

multi-person scenarios. 
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