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Abstract: To address the challenges of inaccurate
localization of multi-scale human keypoints and keypoint
drift under dynamic pose variations, this study proposes
an efficient keypoint detection approach built upon an
improved YOLOv11 architecture. A Multi-Resolution
Parallel Network (MRPN) is introduced after the
backbone to maintain parallel processing of high-,
medium-, and low-resolution feature maps while enabling
cross-scale interaction, thereby enhancing the model’s
capability to perceive keypoints of varying scales. In
addition, a Temporal Spatial Context Fusion Module
(TSCFM) is designed, which integrates a dynamic
temporal modeling unit with a spatial context
enhancement layer to jointly optimize spatial structural
consistency and temporal coherence across both single-
frame and sequential-frame inputs. The proposed method
significantly improves the accuracy and robustness of
keypoint detection while preserving the inference
efficiency of the original YOLOv11, making it well
suited for real-time applications requiring high precision.

Keywords: Human keypoint detection; YOLO; multi-
resolution feature fusion; real-time pose estimation.

1. Introduction

Human keypoint detection, as one of the core tasks in
computer vision, plays a pivotal role in a wide range of
applications, including action recognition, human -
computer interaction, sports analytics, virtual reality, and
medical rehabilitation [1]. With the rapid development of
computer-vision technology and the widespread use of
intelligent devices, keypoint detection has become an
essential bridge connecting the physical and digital
worlds, enabling various intelligent systems to perceive,
interpret, and respond to human motion. In sports training,
for example, it supports the analysis of motion quality; in
rehabilitation, it helps evaluate the recovery of motor
functions; and in human - computer interaction, it
facilitates more natural and intuitive body-motion control
[2].

Despite its broad applicability, human keypoint
detection remains a challenging task. One major
difficulty arises from the large variation in keypoint
scales: small landmarks such as facial features coexist
with larger joints such as shoulders and hips, making it
difficult for traditional feature extractors to capture
discriminative representations across all scales. Moreover,

human poses are highly dynamic, and the positions of
keypoints can change rapidly across consecutive frames,
leading to temporal instability and localization drift[3].
Furthermore, explicit geometric relationships exist among
keypoints — such as joint angles and relative spatial
constraints — which are essential for producing
structurally  coherent and anatomically plausible
predictions but are often insufficiently modeled by
existing methods.

Figljre 1. Keyboiﬁt Detection Figure

The effect diagrams are shown in Figures 1. Deep-
learning - based approaches, particularly those inspired
by the YOLO family, have recently become the
mainstream solution for real-time detection tasks due to
their high efficiency. YOLOv1l, as a representative
single-stage detector, consists of a backbone network for
feature extraction, a feature pyramid for multi-scale
fusion, and a detection head for predicting keypoint
locations [4]. However, the standard framework exhibits
limitations when directly applied to keypoint detection: it
struggles to handle multi-scale keypoints effectively,
especially fine-grained landmarks; it lacks mechanisms to
maintain temporal coherence during rapid pose changes;
and it does not explicitly model geometric relationships
among keypoints, which may result in degraded accuracy
in complex or highly deformable poses.

To address these issues, this paper proposes a real-time
human keypoint detection model based on an improved
YOLOv11 architecture [5]. The proposed approach
incorporates a Multi-Resolution Parallel  Network
(MRPN) to better capture keypoints of varying scales
through parallel feature processing and cross-resolution
fusion [6]. Additionally, a Temporal Spatial Context
Fusion Module (TSCFM) is designed to enhance
temporal continuity and structural consistency by
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integrating dynamic temporal modeling with spatial
contextual reasoning [7]. Through these improvements,
the model aims to achieve robust and accurate keypoint
localization ~ while  maintaining  the  efficiency
characteristic of the YOLO series.

The remainder of this paper is organized as follows.
Chapter 2 reviews existing research on human keypoint
detection. Chapter 3 introduces the architecture and key
components of the proposed approach, including the
MRPN and TSCFM modules. Chapter 4 presents the
experimental setup and evaluation methodology. Chapter
5 concludes the work and discusses potential future
research directions.

2. Related Work

Human keypoint detection, as a fundamental task in
computer vision, has a research history dating back to the
1990s [8]. Early approaches relied heavily on hand-
crafted features and graph-based models, leveraging prior
knowledge of human anatomy — such as joint-length
proportions and feasible angle ranges — to localize
keypoints. However, these methods exhibited poor
adaptability to complex scenarios, including occlusion,
extreme poses, and challenging illumination conditions
[9].

With the rise of deep learning, keypoint detection
methods have undergone substantial evolution. A major
milestone appeared in 2016 with the introduction of the
Stacked Hourglass Network, a heatmap-regression -
based architecture that achieved high accuracy by
stacking multiple prediction modules [10]. Despite its
effectiveness, the method required high computational
cost, limiting its applicability in real-time systems.
Subsequently, OpenPose incorporated a body-part
affinity representation and a multi-stage heatmap
refinement strategy, enabling multi-person keypoint
detection and becoming one of the most influential real-
time frameworks at the time. Nevertheless, its heavy
computation remained a barrier to deployment on mobile
devices.

A significant breakthrough was marked in 2021 by
HRNet, which maintained high-resolution feature
representations through parallel multi-scale processing
[11]. By avoiding the loss of fine-grained information
typically introduced by repeated downsampling in feature
pyramid networks, HRNet achieved substantial gains in
accuracy and established itself as a landmark model in the
field. However, HRNet primarily focuses on single-frame
pose estimation and lacks mechanisms for ensuring
temporal consistency under dynamic pose changes.

In 2018, YOLOvV3 integrated keypoint detection into
the YOLO detection pipeline, leveraging the efficiency of
single-stage detectors to achieve real-time inference.
While the model demonstrated favorable speed, it still
struggled with multi-scale keypoints, particularly small
landmarks such as fine facial features [12].

More recently, increasing attention has been directed
toward modeling geometric relationships among
keypoints. Part-aware Network enhanced spatial context
by identifying body parts as intermediate semantic units,

JOURNAL OF SIMULATION, VOL. 13, NO. 2, 2025

significantly improving detection performance in
scenarios involving large joint-angle variations. Methods
such as SimpleBaseline further simplified the detection
pipeline while maintaining high accuracy and efficiency,
delivering real-time performance without sacrificing
precision.

For mobile applications, lightweight models such as
MobileNet-Pose have integrated compact backbone
networks with keypoint detection heads, achieving a
practical balance between accuracy and computational
efficiency [13]. These approaches can reach real-time
speeds on resource-constrained devices, making them
suitable for mobile and embedded deployments.

Overall, human keypoint detection has evolved from
early hand-crafted pipelines to end-to-end deep learning
models, from single-frame estimation to leveraging multi-
frame information, and from accuracy-focused designs to
architectures that balance precision and efficiency.
Despite the progress, challenges remain in multi-scale
feature processing, maintaining coherence under rapid
pose changes, and effectively modeling spatial
relationships among keypoints. In particular, achieving
high accuracy on small-scale keypoints while preserving
real-time performance, and mitigating localization drift
during dynamic pose transitions, continue to be open
problems — providing the motivation and innovation
direction for this study.

3. Method
3.1 Multi-Resolution Parallel Network (MRPN)

One of the central challenges in human keypoint
detection lies in the large variation of keypoint scales.
When keypoints span a wide range of sizes—from small
landmarks such as the head or eyes to larger joints such
as shoulders or legs — traditional Feature Pyramid
Networks (FPN) often struggle to capture sufficient
multi-scale representations [14]. To address this issue, we
introduce the Multi-Resolution Parallel Network (MRPN),
a feature-fusion module inspired by the principle of
maintaining multi-resolution features in parallel, similar
in spirit to HRNet but redesigned with a distinct
architecture tailored for YOLOvV11.

MRPN is inserted after the YOLOv11 backbone and is
motivated by the need to preserve high-resolution
representations while enabling efficient multi-scale
feature interaction. Unlike conventional FPNs that
repeatedly downsample and upsample features, MRPN
retains four parallel feature streams at different
resolutions (1/4, 1/8, 1/16, and 1/32 of the original input).
These feature maps remain active throughout the
processing pipeline, preventing information loss caused
by aggressive downsampling operations.

A key innovation of MRPN lies in its cross-scale
interaction mechanism, which allows features at different
resolutions to complement one another. At each
resolution level, information from all other scales is
integrated through newly designed cross-connections.
Instead of simple concatenation, MRPN employs
lightweight convolutional layers and attention-based
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fusion Dblocks to adaptively aggregate cross-scale
information, enabling high-resolution features to gain
global context while low-resolution features benefit from
fine-grained spatial details.

During the final fusion stage, MRPN applies a feature
rescaling strategy that upsamples high-resolution streams
to align with low-resolution ones. This ensures consistent
spatial alignment and avoids distortions often seen in
traditional fusion schemes. The resulting feature
representation captures both local structural detail and
broader contextual cues, making it highly suitable for
precise keypoint localization.

In terms of effectiveness, the MRPN module
significantly enhances detection performance for both
small- and large-scale keypoints. Small landmarks such
as facial keypoints benefit from improved high-resolution
retention, while larger joints gain more structurally
consistent representations through cross-scale context
modeling. The parallel architecture also reduces
unnecessary computations, increasing overall efficiency.
The lightweight cross-scale connections increase
computational cost by only a small margin, making the
module suitable for real-time and mobile-device
deployment. In occlusion-heavy scenarios, MRPN
demonstrates robust feature extraction capability,
accurately localizing partially occluded joints and
providing high-quality representations for subsequent
attention modules.

Compared with HRNet, MRPN strengthens cross-scale
interaction with a more efficient and lightweight design,
making it  well-suited for  resource-constrained
applications requiring both accuracy and real-time
performance. The structural schematic diagram of MRPN
is shown in Figure 2.
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Figure 2. MRPN

3.2 Temporal Contextual Fusion Module

(TSCFM)

To address the issue of keypoint localization drift
during rapid pose transitions, we propose the Temporal
Spatial Contextual Fusion Module (TSCFM). This
module jointly models temporal continuity across frames
and the spatial contextual information surrounding each

Spatial
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joint, enabling stable and accurate keypoint estimation in
dynamic scenarios [15].

TSCFM consists of two synergistic components: the
Dynamic Temporal Modeling Unit (DTMU) and the
Spatial Context Enhancement Layer (SCEL). Together,
they refine the feature representation of each keypoint
from temporal and spatial perspectives.

(1) Dynamic Temporal Modeling Unit (DTMU)

DTMU captures cross-frame motion cues by
computing keypoint displacement vectors and applying
an adaptive temporal filtering strategy. Its core lies in a
dynamic temporal weighting mechanism that adjusts the
filtering strength according to the magnitude of pose
variation. During smooth movements, DTMU preserves
more historical information; during intense actions such
as jumping or rapid rotation, it suppresses outdated
context to prevent drift.

(2) Spatial Context Enhancement Layer (SCEL)

SCEL focuses on enhancing local spatial context by
employing joint-aware convolutional kernels that
emphasize structural cues around each keypoint. This
design is particularly beneficial for joints with large
deformation or self-occlusion—such as elbows and knees
—where fine-grained spatial features are crucial.

The innovation behind TSCFM lies in its unified
modeling of temporal dynamics and spatial structure.
Human pose is inherently a spatiotemporal signal; the
keypoint position in the current frame is influenced not
only by visual evidence but also by the posture evolution
from previous frames. Leveraging this property, DTMU
captures the underlying motion trend while SCEL
reinforces local structural cues, resulting in keypoint
predictions that are both stable and precise. The structural
schematic diagram of TSCFM is shown in Figure 3.
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Figure 3. TSCFM
4. Experimental Analysis
4.1 Experimental Settings

All experiments are conducted on the COCO 2017
keypoint validation set, which contains 5,000 images
annotated with 17 human keypoints. To ensure consistent
evaluation, all model variants—including the baseline,
MRPN-enhanced model, TSCFM-enhanced model, and
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the final optimized YOLOv1l—are trained and tested
under the same experimental configuration. The input
resolution is fixed at 640 X 640 for both training and
inference. Standard data augmentation strategies
commonly used in keypoint detection, such as random
horizontal flipping, scale jittering, and color perturbation,
are applied to improve generalization performance.
Training is performed using the AdamW optimizer with
an initial learning rate of 0.001 and a batch size of 32.
The total training schedule spans 300 epochs, and all
experiments are conducted on a single NVIDIA RTX
3090 GPU with mixed-precision acceleration enabled.

Inference speed (FPS) is measured using a batch size
of 1 with the same input resolution to ensure
comparability across models. The reported FPS values
represent the average performance after a brief warm-up
phase, thereby reflecting realistic single-image inference
efficiency. No test-time augmentation or post-processing
refinements beyond standard decoding are applied, and
all models are evaluated strictly following the COCO
keypoint metric based on OKS. Unless otherwise stated,
all implementation details remain consistent across
experiments to ensure that performance differences can
be directly attributed to the introduction of MRPN and
TSCFM.

4.2 Performance Comparison

Table 1. Performance comparison of different model variants
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Figure 4. Performance Comparison

The ablation study results in Table 2 further confirm
the contribution of each module. The MRPN module
improves AP@0.5:0.95 by 2.5 percentage points (54.2%
— 56.7%) and AP50 by 1.7 points (76.8% — 78.5%).
The TSCFM module provides even greater improvements,
increasing AP@0.5:0.95 by 3.6 points (54.2% — 57.8%)
and AP50 by 2.4 points (76.8% — 79.2%). When both
modules are applied, the overall AP@0.5:0.95 reaches
58.7%, outperforming the use of MRPN or TSCFM alone
by 1.0 and 0.9 points, respectively. These results indicate
that MRPN and TSCFM complement each other
effectively: MRPN enhances multi-resolution feature
representation, while TSCFM improves temporal -
spatial consistency, jointly boosting keypoint detection
accuracy without compromising real-time performance.
Table 2. Ablation study

Method AP@0.5:0.95 AP50
Baseline 54.2% 76.8%

+ MRPN 56.7% 78.5%

+ TSCFM 57.8% 79.2%
Optimized YOLOv11 58.7% 79.8%

Model Params (M) FPS | AP@0.5:0.95| AP50
Baseline 22.5 52 54.2% 76.8%
+ MRPN 23.1 50 56.7% 78.5%

+ TSCFM 23.3 49 57.8% 79.2%
Optimized
YOLOV11 235 48 58.7% 79.8%

As shown in Table 1, the optimized YOLOV11 achieve
58.7% AP@0.5:0.95, improving by 4.5 percentage points
over the baseline, while maintaining real-time
performance at 48 FPS. The integration of the MRPN
module increases the model size by only 0.6M to 23.1M
parameters, with a slight decrease of 2 FPS. However,
AP@0.5:0.95 increases by 2.5 points to 56.7%, and AP50
increases by 1.7 points to 78.5%. Introducing the TSCFM
module further adds 0.2M parameters and reduces FPS by
1, but brings an additional 3.6-point improvement in
AP@0.5:0.95 and 2.4-point improvement in AP50. When
both MRPN and TSCFM are applied together, the model
size increases modestly to 23.5M, while AP@0.5:0.95
improves by 4.5 points to 58.7% and AP50 improves by
3.0 points to 79.8%, demonstrating strong combined
effectiveness. The figure 4 illustrates the performance
improvements brought by the proposed modules, where
both AP@0.5:0.95 and AP50 consistently increase as
MRPN and TSCFM are progressively integrated into the
baseline model.

The effect diagrams of human keypoint detection are
shown in Figures 5. The optimized YOLOv11 benefits
from the combination of MRPN for robust multi-scale
feature modeling and TSCFM for enhanced temporal -
spatial context integration. This synergy significantly
improves performance under rapid pose transitions and
complex motion scenarios. While maintaining 48 FPS
real-time inference speed, the model achieves 4.5-point
and 3.0-point improvements in AP@0.5:0.95 and AP50,
respectively. These results demonstrate that the proposed
design effectively balances accuracy and efficiency,
providing a high-performance solution for dynamic
human pose estimation tasks.

Figure 5. Detection Figure
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5. Conclusion

In this work, we proposed an enhanced human
keypoint detection framework based on YOLOv1l,
addressing two long-standing challenges in pose
estimation: inaccurate multi-scale keypoint localization
and temporal instability under dynamic motion. To
overcome these limitations, we introduced two novel
modules—the Multi-Resolution Parallel Network (MRPN)
and the Temporal Spatial Context Fusion Module
(TSCFM) — which respectively improve multi-scale
feature representation and temporal - spatial consistency.

The MRPN module maintains parallel multi-resolution
feature streams and enables effective cross-scale
interaction, substantially enhancing the detection
performance of both small and large keypoints. By
preserving high-resolution representations throughout the
network and introducing lightweight adaptive fusion
connections, MRPN strengthens  spatial feature
completeness while maintaining computational efficiency.

The TSCFM module further improves robustness by
integrating temporal continuity and spatial contextual
cues. Through the Dynamic Temporal Modeling Unit, the
system mitigates keypoint drift across frames, while the
Spatial Context Enhancement Layer refines local joint
representations. Together, these components ensure
consistent and accurate keypoint localization even under
rapid motion, occlusion, and complex pose variations.

Extensive experiments on the COCO 2017 keypoint
validation set demonstrate the effectiveness of the
proposed approach. The optimized YOLOv11 achieves
an AP@0.5:0.95 of 58.7%, outperforming the baseline by
4.5 percentage points while maintaining real-time
performance at 48 FPS. The ablation studies confirm that
MRPN and TSCFM contribute complementary
improvements, jointly delivering superior accuracy
without compromising speed.

Overall, this work provides a practical and efficient
solution for real-time human keypoint detection in
dynamic environments. The proposed modules are
lightweight, generalizable, and can be seamlessly
integrated into other one-stage detectors, making the
approach suitable for applications such as human -
computer interaction, motion capture, intelligent
surveillance, and sports analytics. Future research will
explore incorporating transformer-based global modeling
and extending the framework to 3D pose estimation and
multi-person scenarios.
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